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ABSTRACT

This paper considers the online multi-stream quickest change-
point detection problem. An agent is faced with a set of
independent data streams, one of which contains a change-
point at an unknown time step which shifts the mean of its
distribution by an unknown amount. The goal of the agent
is to minimize its detection delay while controlling for false
alarms. Uninterrupted monitoring of every stream can be
costly due to resource limitations, so the agent only observes
one stream at each point in time. We propose an adaptive
algorithm which combines an ϵ-greedy selection rule with a
change-point detection algorithm for unknown post-change
means. Our main contributions are performance bounds of
our algorithm which show that it matches the asymptotic de-
tection delay (to within a constant factor) of single-stream
CUSUM. Compared with previous work, our algorithm re-
lies on considerably fewer assumptions.

1. INTRODUCTION
We propose an algorithm for online multi-stream quick-

est change detection in the case of an unknown post-change
mean. All streams are initially identically distributed ac-
cording to a distribution known to the observer. At an
unknown change-point, the mean of an unknown stream’s
generating distribution shifts by an unknown amount. The
agent that is searching for the change-point is constrained
to sample only one stream at each time step, which intro-
duces an exploration-exploitation tradeoff in our problem.
We combine an ϵ-greedy approach, which induces a small
amount of forced exploration, with a change-point detec-
tion procedure known as the Generalized Likelihood Ratio
(GLR) statistic, which we use to drive exploitation.

Multi-stream quickest change detection with unknown post-
change means has been addressed in some prior works, and
the most relevant such works are [11] and [3], from which our
approach differs in significant ways. Developments in [11]
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also consider a multi-stream formulation in which only one
stream is sampled at each time step, and that work pro-
poses a round-robin algorithm for stream selection. How-
ever, a drawback of their approach is that it requires the
post-change parameter to have a known lower bound greater
than the pre-change parameter, which limits its effectiveness
in adversarial settings in which an adversary may attempt
to evade detection by deliberately minimizing the changes
that they cause, e.g., by minimizing their radar cross sec-
tion. Work in [3] also employs an ϵ-greedy based strategy in
their multi-dimensional change detection algorithm. How-
ever, their approach requires the set of possible post-change
parameters to be finite, which limits the usability of their
algorithm in continuous signal settings.

In this paper, we eliminate these assumptions for the case
of univariate Gaussian sequences with an unknown post-
change mean shift, and this setup is ubiquitous in radar de-
tection and other remote-sensing problems involving matched
filters and outlier detectors. To analyze our approach, we
derive worst-case minimax detection delay results for our
approach based on a surrogate used in [9]. Then we show
that, despite considering a multi-stream setting and relying
on weaker assumptions, our approach has an asymptotic de-
tection delay that matches (to within a constant factor) the
asymptotic detection delay of a single-stream approach.

2. PROBLEM FORMULATION
We first provide background on online quickest change

detection, then state the problem that we solve.

2.1 Background
The cumulative sum (CUSUM) algorithm, introduced in [6],

monitors the maximum of a set of partial sums of log-likelihood
ratios to detect a change in the distribution of samples from
a known distribution f0 to a known distribution f1. The
statistic (for one stream) at time t is defined as

TCUSUM
t = max

0≤k<t

t∑
i=k+1

log

(
f1(Xi)

f0(Xi)

)
, (1)

where Xi denotes the observation at time i. For a thresh-
old λ, a detection is flagged at the earliest time step t at
which TCUSUM

t exceeds λ. At each time t, (1) can be com-
puted in O(1) time with the recursive formula

TCUSUM
t = max

{
log

(
f1(Xt)

f0(Xt)

)
+ TCUSUM

t−1 , 0

}
.

CUSUM was shown to be minimax optimal in [5]. However



it requires prior knowledge of f0 and f1. The generalized
likelihood ratio (GLR) procedure extends CUSUM to the
case of an unknown post-change parameter by inserting a
maximum likelihood estimator, and it takes the form

TGLR
t = max

0≤k<t
sup
θ∈Θ

t∑
i=k+1

log

(
fθ(Xi)

f0(Xi)

)
, (2)

where Θ is a pre-defined set of possible parameter values.
From [9], for an unknown change in the mean of a normal
distribution with known variance, the GLR statistic is

TGLR
t = max

0≤k<t

(∑t
i=k+1 Xi

)2
2(t− k)

. (3)

The GLR statistic in (2) typically has a per-iteration com-
putational cost of O(t), which can be prohibitive for large t
[10]. The FOCuS algorithm from [8] reduces this complexity
in the case of detecting a mean change of a Gaussian distri-
bution, and it computes (3) with an O(log t) per-iteration
complexity. At each time t, the FOCuS algorithm maximizes
a piecewise-quadratic cost function, where each quadratic
corresponds to a possible change-point location. This ap-
proach is equivalent to maximizing the CUSUM statistic in
(1) over all values of the post-change parameter, and the
FOCuS algorithm performs this maximization efficiently by
using a pruning strategy. Analysis of the single-stream de-
tection delay of the GLR detection procedure in the case of
a univariate mean change of a Gaussian distribution can be
found in [9].

2.2 Problem Statement
We consider M independent data sequences. We denote

the set of streams as [M ] := {1, . . . ,M}. The stream se-
lected and observation generated at time t are denoted as
At ∈ [M ] and Xt ∈ R, respectively. Let A = (A1, A2, . . . )
denote the sampling rule according to which the agent se-
lects the stream to sample at each point in time. The

ith observation from stream m is denoted as X
(m)
i . The

known pre-change distribution, whose density is denoted f0,
is N (µ0, 1), where N (µ, σ2) denotes a univariate Gaussian
distribution with mean µ and variance σ2. We assume with-
out loss of generality that µ0 = 0. Let ϕ and Φ denote the
standard normal density and distribution functions, respec-
tively. The post-change distribution, whose density is de-
noted f1, is N (µ1, 1), where µ1 ̸= µ0 and µ1 is unknown,
though the agent knows f1 is a normal distribution with unit
variance. We denote the KL-divergence between f1 and f0
as D(f1||f0). To ease notation, we assume without loss of
generality that stream 1 contains the change-point at time
ν. If t > ν and At = 1, then Xt ∼ f1. Otherwise, Xt ∼ f0.

We use Tt to denote the detection statistic that we use,
and the stopping time of the change-point detection algo-
rithm is then τ = inf {t > 0 : Tt ≥ λ}, where λ is the fixed
detection threshold that is set when the algorithm is ini-
tialized. We denote the σ-algebra generated up to time t
as Ft := σ (A1, X1, . . . , At, Xt). Given M streams and a
change-point at time ν in stream 1, we denote the induced
probability measure and expected value as PM,ν and EM,ν ,
respectively. When no change-point exists, we use PM,∞
and EM,∞. The following problem adapts the problem for-
mulation from [7].

Problem 1. Develop a procedure (τ, A) that minimizes

the conditional average detection delay

CADDM (τ, A) := sup
ν≥0

EM,ν [τ − ν | τ > ν],

subject to the average run length

ARLM (τ, A) := EM,∞[τ ] ≥ γ,

for a given constant γ > 0.

3. ALGORITHM
In this section we provide a summary of our bandit change

detector algorithm. This algorithm takes in a detection
threshold λ > 0 and an exploration parameter ϵ ∈ (0, 1)
(whose role we define below), and we name the algorithm ϵ-

FOCuS. In it, the symbol N
(m)
t denotes the number of ob-

servations of stream m ∈ [M ] that have been taken at all
times up to and including time t, i.e.,

N
(m)
t =

t∑
k=1

1 {Ak = m} ,

where 1{S} is the indicator function for the event S. The
agent maintains a local statistic for each stream m ∈ [M ],

which is denoted as T
(m)
t , and this statistic is generated

from stream m’s observations X
(m)
1 , . . . , X

(m)

N
(m)
t

. The local

statistic for stream m ∈ [M ] at time t is calculated as

T
(m)
t = max

0≤k<N
(m)
t

(∑N
(m)
t

i=k+1 X
(m)
i

)2

2
(
N

(m)
t − k

) ,

which is identical to the single-stream GLR statistic detailed
in (3), except instead of being calculated from t observations

it is calculated using N
(m)
t observations since that is the

number of observations of stream m that have been made.
The value of this statistic can be computed efficiently in

O(log t) time using the FOCuS algorithm [8]. If N
(m)
t = 0,

then the statistic takes the value of the empty sum, which
is 0. The agent’s detection statistic at time t is equal to the
largest local GLR statistic from the M streams, i.e.,

Tt = max
m∈[M ]

T
(m)
t .

The ϵ-FOCuS algorithm runs as follows. At each time
t, an exploration decision Gt is sampled from a Bernoulli
distribution with parameter ϵ, where ϵ ∈ (0, 1) is the prob-
ability of exploration that is initialized at the beginning of
the algorithm. If Gt = 1, then the agent randomly samples
a stream index from [M ] and then observes the stream with
that index. If Gt = 0, then the agent selects the stream
whose local GLR statistic is largest based on the previous
t− 1 time steps, namely

At = argmax
m∈[M ]

T
(m)
t−1 .

Then the stream with index At is sampled, which gives the

observation Xt. Using that observation, the statistic T
(At)
t

is updated and the statistic Tt is calculated by taking the
maximum of all M GLR statistics. The algorithm is stopped
if Tt ≥ λ and continues to run otherwise.

4. MAIN RESULTS



In this section we present our three main results and then
discuss how they can be used to calibrate the parameters of
the ϵ-FOCuS algorithm.

4.1 Statements of Results
First, we show that the stream with the changepoint has

the largest detection statistic after some finite point in time.

Proposition 1. Consider an agent using ϵ-FOCuS on
M > 1 streams with an exploration parameter ϵ ∈ (0, 1) and
a detection threshold λ > 0. Suppose without loss of general-
ity that a change-point exists at time ν = 0 in stream 1. Let
Ht denote the event that at time t, one of the local statis-
tics of a stream m ∈ [M ] \ {1} is greater than or equal to
stream 1’s, expressed as

Ht :=

{
max

m∈[M ]\{1}
T

(m)
t ≥ T

(1)
t

}
.

Then there a.s. exists a finite t0 such that for all t > t0, we
have 1{Ht} = 0.

Proof. See Section 8.3.

Next, we upper-bound the amount of time required for
the stream with the changepoint to be identified as such.

Theorem 1. Consider an agent using ϵ-FOCuS on M
streams, and suppose that stream 1 contains a change-point
at time ν = 0 that shifts its distribution from N (0, 1) to
N (µ1, 1), where µ1 ̸= 0. For a detection threshold λ > 0
and an exploration parameter ϵ ∈ (0, 1), the expected time
until detection τ is bounded via

EM,0[τ ] ≤
1

1− ϵ

(
2λ(1 + o(1))

µ2
1

+ Cϵ,µ1,M

)
as λ → ∞, where Cϵ,µ1,M > 0 is a constant determined by
ϵ, µ1, and M .

Proof. See Section 8.3.

Finally, we lower-bound the expected amount of time be-
fore which a false detection occurs.

Theorem 2. Consider an agent using ϵ-FOCuS on M
streams, where all streams are distributed according to f0,
i.e., no change has occurred. Then given a detection thresh-
old λ > 0 and an exploration parameter ϵ ∈ (0, 1), the ex-
pected time until a false detection τ is bounded via

EM,∞[τ ] ≥ eλ
√
π

M
√
λ
∫∞
0

xg(x)2dx

as λ → ∞, where g(x) is defined as

g(x) = 2x−2exp

[
−2

∞∑
n=1

n−1Φ
(
−xn1/2/2

)]
, x > 0.

Proof. See Section 8.3.

4.2 Discussion and Application of Results
The rate at which the o(1) term goes to 0 as λ → ∞

in Theorem 1 depends only on the size of µ1 since it comes
from the single-stream asymptotic performance bound of the
GLR procedure from [10]. The constant Cϵ,µ1,M grows as
M grows, and Cϵ,µ1,M grows as ϵ and µ1 approach 0, which
is intuitive because these changes make it more difficult to
identity the correct stream during greedy selection.

Using Theorems 1 and 2, we compare ϵ-FOCuS in the
M -stream setting with CUSUM in the single-stream setting
when f0 and f1 are both known to CUSUM. CUSUM is
optimal for Pollak’s minimax formulation [7] in the single-
stream setting, which implies that its worst-case expected
detection delay

CADD(τ) := sup
ν≥0

E1,ν [τ − ν | τ > ν]

is minimized, subject to the average run length (the ex-
pected stopping time when there is no change-point), namely

ARL(τ) := E1,∞[τ ] ≥ γ,

for some constant γ > 0. This optimality implies that it
matches the asymptotic lower bound of any detector, namely

inf
{
CADD(τ) : ARL(τ) ≥ γ

}
≥ log γ

D(f1||f0)
(1 + o(1)) (4)

as γ → ∞ [4]. As seen in Theorem 1, we use EM,0[τ ] as a
surrogate for the CADD. We do this for two reasons: (i)
it well-known that CUSUM attains its worst-case detection
delay at ν = 0, so this surrogate makes for an effective com-
parison [10], and (ii) [9] uses the same surrogate in their
analysis of the single-stream GLR procedure. From The-
orem 2, the expected stopping time when no change-point

occurs is lower bounded as EM,∞[τ ] ≥ eλC

M
√
λ
as the threshold

λ → ∞. For simplicity of notation we let C =
√

π∫∞
0 xg(x)2dx

since it is constant with respect to the threshold and num-
ber of streams. By setting the ARL lower bound equal to
γ and solving, we derive the minimum threshold needed to
attain an ARL at least as large as γ to be

λ = (1 + o(1)) log

(
Mγ

C

)
(5)

as γ → ∞. For a fixed M , we can substitute our threshold
in (5) into the expected detection delay bound in Theorem 1
to upper bound our surrogate for the CADD, which gives

EM,0[τ ] ≤
1

1− ϵ

(
2λ(1 + o(1))

µ2
1

+ Cϵ,µ1,M

)
=

1

1− ϵ

(
2(1 + o(1)) log

(
Mγ
C

)
(1 + o(1))

µ2
1

+ Cϵ,µ1,M

)

=
(1 + o(1)) log (γ)

D(f1||f0) (1− ϵ)
(6)

as γ → ∞. Here, log(M), log(C), and Cϵ,µ1,M are fixed as
γ → ∞ and are absorbed into o(1) and (1+o(1))(1+o(1)) =
(1 + o(1)). Thus, (6) implies that, as γ → ∞, the expected
detection delay of our algorithm (given an ARL greater than
γ) is upper-bounded by Lai’s lower bound of any detector [4],
as seen in (4), multiplied by a constant which is indepen-
dent of the number of streams. Therefore, our algorithm is
within a constant factor of minimax optimality. Moreover,
our bound is within a constant factor of the performance
of CUSUM, which requires complete knowledge of both the
pre-change and post-change distributions, even though we
do not require knowledge of the post-change distribution.

5. SIMULATIONS
We perform Monte Carlo simulations to evaluate the per-

formance of ϵ-FOCuS for M = 10 streams and a post-change



Figure 1: Comparison of expected detection delays
of ϵ-FOCuS across different change-point locations
and thresholds with M = 10, µ1 = 1, and ϵ = 0.1.

mean of µ1 = 1. We use an exploration parameter of ϵ = 0.1,
and in Figure 1 we compare the expected detection delay
across various detection thresholds λ and values of ν. Specif-
ically, Figure 1 shows the value of the detection delay av-
eraged over 50 simulations that were done for each (λ, ν)
pair. The results are roughly equivalent for all change-point
locations, suggesting the algorithm’s performance depends
only weakly on the location of ν.

In Figure 2 we compare our algorithm’s performance with
CUSUM’s asymptotic detection delay, which is λ

DKL(f1||f0)
(1+

o(1)) = 2λ
µ2
1
(1 + o(1)) as λ → ∞ . From Theorem 1, the

asymptotic detection delay should be worse by at most a
factor of 1/(1 − ϵ) ≈ 1.11, which we indeed see in Figure 2
as λ grows.

6. CONCLUSION
We presented a novel use case of reinforcement learning

for the setting of online multi-stream quickest change de-
tection. The majority of our work was in characterizing
the asymptotic performance of our ϵ-greedy change-point
detection algorithm. While our results indicate significant
progress over previous approaches, this is still ongoing work.
The eventual goal will be to replace ϵ-greedy with a stochas-
tic bandit algorithm which attains sub-linear regret such as
UCB [2] or Thompson Sampling [1].
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8. APPENDIX



8.1 Basic Facts
For the Chernoff-Hoeffding bound, we use the formulation

given by [1], which we restate here.

Fact 1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn

be independent random variables with support [0, 1] such that
E[Xi] = µ,∀i. Let Sn =

∑n
i=1 Xi. For all a ≥ 0, we have

P(Sn ≥ nµ+ a) ≤ e−2a2/n, P(Sn ≤ nµ− a) ≤ e−2a2/n.

Fact 2 (Borel-Cantelli Lemma). For a sequence of
events A1, A2, . . . , if

∑∞
n=1 P(An) < ∞, then P(An i.o.) =

0, i.e., only finitely many events An occur a.s.

8.2 Supporting Lemmas

Lemma 1. Consider an agent using ϵ-FOCuS on M > 1
streams with an exploration parameter ϵ ∈ (0, 1). Suppose
without loss of generality that a change-point exists at time
ν = 0 in stream 1. Then

∞∑
t=0

PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t >

ϵt

2M

)
< ∞.

Proof. We denote the sample mean of stream 1’s obser-

vations at time t as µ̂
(1)
t =

∑N
(1)
t

i=1 X
(1)
i

N
(1)
t

. At time t,

PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t >

ϵt

2M

)

≤ PM,0


(∑N

(1)
t

i=1 X
(1)
i

)2

2N
(1)
t

<
µ2
1ϵt

8M
,N

(1)
t >

ϵt

2M


= PM,0

|µ̂(1)
t | < |µ1|

√
ϵt

2

√
N

(1)
t M

,N
(1)
t >

ϵt

2M

 , (7)

where the first inequality follows because

T
(1)
t = max

0≤k<N
(1)
t

(∑N
(1)
t

i=k+1 X
(1)
i

)2

2(N
(1)
t − k)

≥

(∑N
(1)
t

i=1 X
(1)
i

)2

2N
(1)
t

.

Lowering bounding N
(1)
t as ϵt

2M
, we bound (7) as

PM,0

|µ̂(1)
t | < |µ1|

√
ϵt

2

√
N

(1)
t M

,N
(1)
t >

ϵt

2M


≤ PM,0

(
|µ̂(1)

t | < |µ1|√
2
, N

(1)
t >

ϵt

2M

)
.

By the strong law of large numbers, |µ̂(1)
t | a.s.−−→ |µ1|. There-

fore, as N
(1)
t grows,

{
|µ̂(1)

t | < |µ1|√
2

}
holds for finitely many

t, giving
∑∞

t=0 PM,0

(
T

(1)
t <

µ2
1ϵt

8M
, N

(1)
t > ϵt

2M

)
< ∞.

Lemma 2. Consider an agent using ϵ-FOCuS on M > 1
streams with an exploration parameter ϵ ∈ (0, 1), and sup-
pose without loss of generality that a change-point exists at
time ν = 0 in stream 1. Then

∞∑
t=0

PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t ≤ ϵt

2M

)
< ∞.

Proof. At time t, independent of Ft−1, the probability
of picking stream 1 is at least ϵ

M
simply from exploration.

Then the Chernoff-Hoeffding (Fact 1) gives

PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t ≤ ϵt

2M

)
≤ PM,0

(
N

(1)
t ≤ ϵt

2M

)
≤ exp

(
− ϵ2t

2M2

)
. (8)

Since (8) is exponentially decreasing, its sum from t = 0
to ∞ is finite, and the result follows.

Lemma 3. Consider an agent using ϵ-FOCuS on M > 1
streams with an exploration parameter ϵ ∈ (0, 1), and sup-
pose without loss of generality that a change-point exists at
time ν = 0 in stream 1. Then

∞∑
t=0

PM,0

(
T

(2)
t ≥ T

(1)
t , T

(1)
t ≥ µ2

1ϵt

8M

)
< ∞.

Proof. At time t,

PM,0

(
T

(2)
t ≥ T

(1)
t , T

(1)
t ≥ µ2

1ϵt

8M

)
≤ PM,0

(
T

(2)
t ≥ µ2

1ϵt

8M

)

≤ PM,0

 max
0≤i<j≤t

∣∣∣∑j
k=i+1 X

(2)
k

∣∣∣
√
j − i

≥ |µ1|
√
ϵt

2
√
M

 , (9)

where (9) follows since the event max
0≤k<N

(2)
t

(∑N
(2)
t

k=i+1 X
(2)
k

)2

2
(
N

(2)
t − i

) ≥ µ2
1ϵt

8M

 ,

implies the event max
0≤i<j≤t

∣∣∣∑j
k=i+1 X

(2)
k

∣∣∣
√
j − i

≥ |µ1|
√
ϵt

2
√
M

 .

From Proposition 1 in [9], a constant C > 0 exists such that

PM,0

(
max

0≤i<j≤t

|
∑j

k=i+1 X
(2)
k |

√
j − i

≥ |µ1|
√
ϵt

2
√
M

)

∼ Ct

(
|µ1|

√
ϵt

2
√
M

)
ϕ

(
|µ1|

√
ϵt

2
√
M

)
. (10)

Since (10) is exponentially decreasing, its sum from t = 0
to ∞ is finite, and the result follows.

8.3 Proofs of Main Results
Proof of Proposition 1. Applying the union bound,

we split the probability of Ht at time t into the sum of the
probabilities that each of the statistics for streams m ̸= 1

exceeds T
(1)
t , which gives

PM,0 (Ht) = PM,0

(
max

m∈[M ]\{1}
T

(m)
t ≥ T

(1)
t

)
≤

M∑
m=2

PM,0

(
T

(m)
t ≥ T

(1)
t

)
= (M−1)PM,0

(
T

(2)
t ≥ T

(1)
t

)
,

(11)

where (11) follows since the statistics for streams m ̸= 1 are

identically distributed. We can bound PM,0

(
T

(2)
t ≥ T

(1)
t

)



as

PM,0

(
T

(2)
t ≥ T

(1)
t

)
≤ PM,0

(
T

(2)
t ≥ T

(1)
t , T

(1)
t ≥ µ2

1ϵt

8M

)
+ PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t >

ϵt

2M

)
+ PM,0

(
T

(1)
t <

µ2
1ϵt

8M
,N

(1)
t ≤ ϵt

2M

)
.

Applying Lemmas 1, 2, and 3 gives
∑∞

t=0 PM,0(Ht) < ∞.
From the Borel-Cantelli lemma (Fact 2), Ht a.s. holds true
for only finitely many t.

Proof of Theorem 1. The detection delay can be par-
titioned into the time spent observing stream 1 and the time
spent observing other streams as

EM,0 [τ ] = EM,0

[
N (1)

τ

]
+ EM,0

[
τ∑

t=1

1 {Gt = 0, At ̸= 1}

]

+ EM,0

[
τ∑

t=1

1 {Gt = 1, At ̸= 1}

]
. (12)

From Proposition 1, there a.s. exists a finite time step after
which streams m ̸= 1 are not selected during exploitation,
so there exists a finite constant Cϵ,µ1,M > 0 (which depends
on ϵ, µ1, and M) such that

EM,0

[
τ∑

t=1

1 {Gt = 0, At ̸= 1}

]
≤ Cϵ,µ1,M . (13)

At any time t, Gt = 1 happens with probability ϵ. Given
Gt = 1, At ̸= 1 happens with probability M−1

M
. Therefore

EM,0

[
τ∑

t=1

1 {Gt = 1, At ̸= 1}

]
=

ϵ(M − 1)

M
EM,0 [τ ] .(14)

When M = 1, the expected number of observations from
stream 1 before a detection is flagged within stream 1 is
equal to the expected value of τ . However, in the multi-
stream (M > 1) setting, detection can be flagged from a
stream other than stream 1, in which case stream 1 would
have generated fewer samples than it did in the single-stream

setting. Then the expected value of N
(1)
τ in the multi-stream

(M > 1) setting is upper-bounded by the expected value of
τ in the single-stream (M = 1) setting. Formally,

EM,0

[
N (1)

τ

]
≤ E1,0 [τ ] . (15)

Since the GLR procedure is asymptotically optimal in the
single-stream setting [10], we have

E1,0[τ ] ≤ sup
ν≥0

E1,ν [τ − ν | τ > ν] =
λ(1 + o(1))

D(f1||f0)
, (16)

as the threshold λ → ∞. Using (13), (14), (15), and (16)
in (12) gives

EM,0[τ ] ≤
λ(1 + o(1))

D(f1||f0)
+ Cϵ,µ1,M +

ϵ(M − 1)

M
EM,0 [τ ]

≤ 2λ(1 + o(1))

µ2
1

+ Cϵ,µ1,M + ϵEM,0 [τ ] ,

which follows since D(f1||f0) = µ2
1
2
. The result follows from

solving for EM,0[τ ].

Proof of Theorem 2. Given a threshold λ > 0, for any
t0 ∈ N we have

PM,∞ (τ > t0)

= PM,∞

 M⋂
m=1

 max
0≤i<j≤N

(m)
t0

(∑j
k=i+1 X

(m)
k

)2
2(j − i)

< λ




≥ PM,∞

 M⋂
m=1

 max
0≤i<j≤t0

(∑j
k=i+1 X

(m)
k

)2
2(j − i)

< λ




=

M∏
m=1

PM,∞

 max
0≤i<j≤t0

(∑j
k=i+1 X

(m)
k

)2
2(j − i)

< λ



= PM,∞

 max
0≤i<j≤t0

(∑j
k=i+1 X

(1)
k

)2
2(j − i)

< λ


M

. (17)

The first line of (17) follows since the stopping time is only
greater than t0 if all of the GLR statistics produced up to

time t0 are less than λ. The next step follows since N
(m)
t0

≤
t0 for all m ∈ [M ], which is the case since

∑
m∈[M ] N

(m)
t0

=

t0. If all {(i, j) : 0 ≤ i < j ≤ t0} produce statistics less than

λ, then all
{
(i, j) : 0 ≤ i < j ≤ N

(m)
t0

}
produce statistics less

than λ. The converse may not be true, so the probability

of not flagging a detection in stream m ∈ [M ] after N
(m)
t0

samples is more likely than the probability of not flagging a
detection after t0 samples from stream m ∈ [M ]. The next
line of (17) follows since the events are independent. The
last line of (17) follows since all of the streams are iden-
tically distributed as f0 in the no-change scenario. From
Proposition 1 in [9], the probability of the event max

0≤i<j≤t0

(∑j
k=i+1 X

(1)
k

)2
2(j − i)

< λ


is equal to the probability of the event {τ > t0} when M = 1
and ν = ∞. Using this equivalence in (17), we see that

PM,∞ (τ > t0) ≥ P1,∞ (τ > t0)
M .

From Theorem 1 of [9], when M = 1 and ν = ∞ the
value of τ is asymptotically exponentially distributed with
expected value

E1,∞[τ ] =
eλ

√
π√

λ
∫∞
0

xg(x)2dx

as λ → ∞. Calculating the formula for the expected value of
an exponential random variable using tail integration gives

EM,∞[τ ] =

∞∑
t0=0

PM,∞(τ > t0) ≥
∞∑

t0=0

P1,∞(τ > t0)
M

∼
∫ ∞

0

exp(−Mt0/E1,∞[τ ])dt0

=
E1,∞[τ ]

M
=

eλ
√
π

M
√
λ
∫∞
0

xg(x)2dx

as λ → ∞.


